A concise course in complex analysis and Riemann surfaces

نویسنده

  • Wilhelm Schlag
چکیده

Contents Preface v Chapter 1. From i to z: the basics of complex analysis 1 1. The field of complex numbers 1 2. Differentiability and conformality 3 3. Möbius transforms 7 4. Integration 12 5. Harmonic functions 19 6. The winding number 21 7. Problems 24 Chapter 2. From z to the Riemann mapping theorem: some finer points of basic complex analysis 27 1. The winding number version of Cauchy's theorem 27 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi Riemann surfaces

A quasi Riemann surface is defined to be a certain kind of complete metric space Q whose integral currents are analogous to the integral currents of a Riemann surface. In particular, they have properties sufficient to express Cauchy-Riemann equations on Q. The prototypes are the spaces D 0 (Σ)m of integral 0-currents of total mass m in a Riemann surface Σ (usually called the integral 0-cycles o...

متن کامل

A Crash Course on Compact Complex Surfaces

“Analytic invariants” of complex manifolds that the generalizations of the genus of curves, and their birationally invariant nature. Blow-up of a surface at a point. Birational classification of complex surfaces via minimal models. Enriques-Kodaira classification. Canonical models. Calabi-Yau manifolds and K3 surfaces. Fano manifolds and del Pezzo surfaces. A Crash Course onCompact Complex Surf...

متن کامل

Introduction to Compact Riemann Surfaces

The theory of Riemann surfaces is a classical field of mathematics where geometry and analysis play equally important roles. The purpose of these notes is to present some basic facts of this theory to make this book more self contained. In particular we will deal with classical descriptions of Riemann surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic functions, theta fun...

متن کامل

Automatic Generation of Riemann Surface Meshes

Riemann surfaces naturally appear in the analysis of complex functions that are branched over the complex plane. However, they usually possess a complicated topology and are thus hard to understand. We present an algorithm for constructing Riemann surfaces as meshes in R from explicitly given branch points with corresponding branch indices. The constructed surfaces cover the complex plane by th...

متن کامل

Hyperbolic geometry from a local viewpoint , by Linda Keen and Nikola

In addition to being packed with fundamental material important for every beginner in complex analysis, in expeditious and intuitive terms this little book transports the reader through a range of interesting topics in one-dimensional hyperbolic geometry, discrete subgroups, holomorphic dynamics and iterated function systems. In chapter after chapter, one quickly arrives at open problems and ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011